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ABSTRACT 

Background:  The world’s oceans are home to a diverse array of microbial life whose metabolic activity 

helps to drive the earth’s biogeochemical cycles.  Metagenomic analysis has revolutionized our access to 

these communities, providing a system-scale perspective of microbial community interactions. However, 

while metagenome sequencing can provide useful estimates of the relative change in abundance of 

specific genes and taxa between environments or over time, this does not investigate the relative changes 

in the production or consumption of different metabolites.  

Results:  We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and 

enables exploration of metabolite-space inferred from the metagenome.  Our analysis of metagenomic 

data from a time–series study in the Western English Channel demonstrated considerable correlations 

between predicted relative metabolic turnover and seasonal changes in abundance of measured 

environmental parameters as well as with observed seasonal changes in bacterial population structure. 

Conclusions:  The PRMT method was successfully applied to metagenomic data to explore the Western 

English Channel microbial metabalome to generate specific, biologically testable hypotheses.  Generated 

hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and 

Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis 

pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota.  The PRMT method can be applied as a 

general tool for the analysis of additional metagenomic or transcriptomic datasets. 

 

BACKGROUND 

Marine biomes dominate the planet’s surface and single-celled microorganisms are responsible for up to 

98% of the ocean’s primary productivity [1]; understanding the nutrient and carbon cycles of the world’s 
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oceans has key applications for understanding global ecology.  The extremely diverse marine microbial 

communities mediate the largest active pool of near-surface carbon on the planet [2] and are a dominant 

force in the planet’s biogeochemical cycles [3].  The L4 Station of the Western Channel Observatory 

(WCO), an oceanographic time-series and marine biodiversity reference site in the Western English 

Channel (http://www.westernchannelobservatory.org.uk), provides a unique opportunity to study a coastal 

marine microbial ecosystem.  Environmental parameter data from the WCO have been continuously 

monitored for over a century.  More recently, microbial metagenomic data collected from this site have 

shown that the abundance and relative composition of genes and taxa change over time, demonstrating 

seasonal structure and predictable community responses to environmental parameters [4, 5, 6, 7].  

The seasonal structure in the community composition of both taxa and genes has potential 

repercussions for the seasonal succession in metabolic potential, which will drive the range and relative 

abundance of metabolites produced and consumed by a community. Metagenomic analyses explore the 

functional potential of an ecosystem by describing the changes in the abundance of genes annotated with 

unique enzyme functions. Here we propose a methodology that alters this paradigm, by describing the 

metagenome in terms of the relative change in the production or consumption of specific metabolites.  

Instead of exploring gene-space using an environmental metagenomic analysis, this study explores 

derived metabolite-space, inferred from the metagenome. The predicted environmental metabolome is the 

set of all detected unique enzyme functions encoded in a metagenome and all of the metabolites implied 

by those activities.  This network of predicted metabolic reactions represents the theoretical metabolic 

potential of an environmental metabolome and provides a novel means through which metagenomic 

observations of seasonal and/or biogeographic trends in microbial communities can be utilized to explore 

community-wide metabolic dynamics.  

Understanding the metabolomic interactions in any marine microbial community is a daunting 

task.  Classical metabolomic techniques such as NMR or GC-MS [8, 9, 10, 11], while powerful, provide 

measurements for just a fraction of the metabolites predicted to be present in a metabolome. As it is not 
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possible to easily measure every metabolite in an environment, it is important to determine the most 

pertinent parameters, those that will allow investigators to generate testable biological hypotheses.  

Currently, methods are available to extract a wide variety of environmental features from metagenomic 

sequence data [12, 13, 14]. Metagenomics can be used to determine the taxonomic and functional 

diversity of a microbial community via automated pipelines [15] to curated protein databases such as 

RefSeq [16], KEGG [17], KEGGnoggs [18], SEED [19], PFAM [20] or TIGRfam [21], and linking 

environmental conditions with specific metabolic activities inferred from metagenomic data [22].  

Here, we propose a novel computational method, Predicted Relative Metabolic Turnover 

(PRMT), which enables comparative analyses of environmental metabolomes predicted from 

metagenomic data. To support the methodology with specific biological observations, PRMT was applied 

to a metagenomic dataset from the time-series study of the bacterial environmental metabolome in the 

Western English Channel [4]. The PRMT approach also correctly predicted considerable correlations 

between environmental metabolite concentrations and PRMT metabolomic predictions. It also correctly 

predicting seasonal variations in the bacterial community primary productivity, and generated specific, 

testable biological hypotheses for organic phosphate utilization by Gammaproteobactaria, 

Plantcomycetes, and Betaproteobacteria; chitin degradation by Actinomycetes; and potential small 

molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. 

 

MATERIALS AND METHODS 

Data used for validation of methodology 

Metagenomic sequencing data was acquired from a recent study examining the seasonal structure of 

functional potential in the Western English Channel [4].  Specific data points for use in this study came 

from day/night pairs of samples taken on January 28, April 27, and August 27 2008.  All data collected on 

the same day were averaged; previous analyses of these data have shown that the metagenomic functional 
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gene profile is statistically identical between day and night in each of these samples [4]. All metagenomic 

data were annotated with MG-RAST [15] using parameters previously described [4].  Specifically, 

nucleic acid sequences were excluded if annotated as rRNA, and all subsequent reads were annotated 

against the SEED database using MG-RAST (e-value <1×10−3; minimum length of alignment of 50 bp; 

minimum sequence nucleotide identity of 50%; [15]) to produce an abundance matrix of functional genes 

and protein-derived predicted taxonomies across the DNA samples. Short read data are available through 

the European Nucleotide Archive (ENA) short read archive under ERP000118 

(http://www.ebi.ac.uk/ena/data/view/ERP000118).  All data are available on the CAMERA website under 

‘Western Channel Observatory Microbial Metagenomic Study’ (http://camera.calit2.net).  MG-RAST 

annotations of metagenomic data were collected under IDs 4445064.3, 444077.3, 4445065.3, 4445066.3, 

4445068.3, 4444083.3, 4445069.3, and 4445070 (http://metagenomics.anl.gov/).  All submissions 

conform to the minimum information standards (MIxS) of the Genomic Standards Consortium [23].    

 

PRMT analysis approach 

PRMT scores predict the change in turnover of metabolites (defined as the potential for 

consumption or production) in an environmental metabolome, given the relative abundance of genes for 

unique enzyme functions detected in different metagenomes.  In this manuscript, we use the term “unique 

enzyme function” to describe a specific annotation applied to an enzyme, i.e. “Phosphotransferases with 

an alcohol group as acceptor”.  We use “enzyme reactions” to refer to metabolite transformations 

catalyzed by an enzyme function, i.e “ATP + D-Glycerate ↔ ADP + 3-Phospho-D-glycerate”.  A unique 

enzyme function may catalyze more than one enzyme reaction and an enzyme reaction may be catalyzed 

by more than one unique enzyme function.  A metabolite is a molecular compound that is a reactant or 

product in an enzyme reaction.  In PRMT, a metabolite is never the protein product of a gene in the 

metagenome.   
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This method makes a number of assumptions.  First, as with many metagenomic analyses, it 

assumes that relative abundance of genes for a unique enzyme function in metagenomic sequence is 

proportionate to relative abundance of expressed functional proteins. Second, PRMT assumes the rate of a 

reaction is proportionate to the amount of enzyme, and not to the concentrations of reactant or product.  

Finally, PRMT assumes that the marine metabolome can be modeled as a well-mixed reaction, 

disregarding compartmentalization of metabolites and activities within individual bacteria. All unique 

enzyme functions annotated to a set of metagenomes are compared to reference databases of enzyme 

reactions to infer the set of metabolites present. Below we describe the three main steps to calculating 

PRMT scores (Figure 1):  

(1) Generate Environmental Metabolome Matrix (EMM). A network, constructed from annotated unique 

enzyme functions, enzyme reactions and inferred metabolites, is used to generate the predicted 

environmental metabolome; this network is expressed as a connectivity matrix, the Environmental 

Metabolomic Matrix (EMM; Figure 1).  The resulting EMM matrix has dimensions n x m, where n is the 

number of predicted metabolites in the environmental metabolome and m is the number of unique enzyme 

functions detected in the set of analyzed metagenomes.  The set of Kyoto Encyclopedia of Genes and 

Genomes (KEGG) [17] metabolic reactions was used to represent the set of possible enzyme reactions in 

an environmental metabolome and Enzyme Commission (EC) number annotations for enzyme activity 

from MG-RAST annotations of metagenomic sequences were used to assign unique enzyme functions to 

the predicted proteins encoded in a metagenome.  KEGG reactions used were selected exclusively from 

KEGG ‘Metabolism’ pathways.  KEGG pathway maps that are not directly related to specific metabolic 

activities in microorganisms (e.g. Human Diseases, Drug Development, etc.) were not used in generation 

of metabolomes.  A complete list of the 156 KEGG pathways used in construction of EMM is provided as 

supplementary data [Additional file 1, Table S1].  As is common in network analysis of biochemical 

systems [24], the KEGG metabolites water, di- and tri-phosphonucleotides, and all ubiquitous cofactors 

were excluded from the list of possible reactants as non-specific to particular reactions and metabolic 

processes.   If a reaction is identified as reversible in the KEGG database, then both forward and reverse 
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reactions are included in the EMM. If a particular metabolite transformation is attributed to more than one 

enzyme activity, then each transformation reaction is incorporated into the EMM.  The stoichiometry of 

each reaction was not considered as the quantity of metabolites was not considered, just the relative 

turnover of each. 

(2) Generate normalized Enzyme Activity Counts (EACs). For each unique enzyme function in each 

metagenome in the EMM, an Enzyme Activity Count (EAC) is determined by the following equation: 

 

 EACi is the Enzyme Activity Count for enzymatic function i, and Nseq,i is the number of sequence reads in 

the metagenome annotated with a unique enzyme function i.  Collected EACs for a set of metagenomes 

are normalized (nEAC) by quantiles [25].  Quantile normalization is a technique for making distributions 

from multiple datasets identical in statistical properties. To quantile-normalize the sets of EACs, the 

EACs are sorted largest to smallest.  A reference distribution is made from the sorted lists such that the 

highest value in all cases becomes the mean of the highest values, the second highest value becomes the 

mean of the second highest values, and so on.  For each set of EACs, nEAC is generated by assigning the 

distributions of the reference distribution to the observed EAC distribution. The  set of nEACs for a 

metagenome is expressed as a vector of length n, where n is the total number of unique enzyme functions 

found in the set of metagenomes. 

(3) Calculate PRMT-scores. A PRMT-score is calculated for each metabolite in the EMM in a 

metagenome using the following equation: 

r
cx,y=M

r
gx−

r
gy( )  

yxc ,

r
is a vector of PRMT-scores of length m, where m is the number of metabolic compounds in the 

EMM.  xg
r

and yg
r

are vectors of normalized enzyme gene counts (nEAC) of length n, where n is the 
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number of unique enzyme functions annotated to metagenomic sequences, and x and y refer to different 

metagenome datasets.  M is the EMM, a matrix of dimensions m x n.  Changes in nEAC for a reversible 

interaction do not change calculated PRMT-scores for metabolites.  For analysis of the L4 WCO 

environmental metabolome, the reference nEAC was the average of EAC’s across all samples from 

January, April, and August.   

Interpretation of PRMT scores 

PRMT-scores are unit-less values that represent the change of the turnover of a metabolite in a 

predicted metabolome relative to a reference metabolome.  A PRMT-score is calculated for every 

metabolite in the EMM for a metagenome.  The value and sign (positive or negative) of a PRMT-score 

provides information about a metabolite’s relative turnover.  Although a thorough interpretation of a 

PRMT-score requires that it be considered in the greater context of the complete network, it can be 

broadly interpreted as follows: A positive PRMT score predicts increased metabolic turnover and 

relatively greater consumption of a metabolite.  A negative PRMT-score predicts decreased turnover and 

relatively greater accumulation of a metabolite.  It is important to note that PRMT-scores do not predict 

net production or consumption of a metabolite.   

Correlations between PRMT-scores and environmental parameters 

Numerous methods were considered for exploring the correlative relationships between calculated PRMT 

scores and measured environmental variables. The non-parametric Spearman’s rank correlation was 

rejected because the resulting coefficients were considered too granular to produce appropriate 

interpretation of dataset with only 3 time points. Specifically, Spearman’s rank correlation returned only 6 

possible values of rho for all comparisons in this dataset.  Hence, while Spearman’s rank may well be 

suited to correlation coefficient calculation from a dataset with more time points, it was inappropriate for 

the current study. However, as the PRMT scores generated an approximately normal distribution, it was 

considered absolutely valid to utilize a parametric test for correlation, namely Pearson’s Correlation 
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Coefficient (PCC). The specific biological parameters considered were environmental metabolites ([4], 

Table 1, chlorophyll A, Total Organic Nitrogen (TON), Total Organic Carbon (TOC), NO2+NO3, 

Ammonia, and Soluble Reactive Phosphate (SRP)), bacterial phyla percent abundances [7, Table S2] ( 

only the 23 bacterial phyla and class present at a percent abundance of at least 1% of the total community 

abundance were used in this analysis.), and number of sequences in metagenomic data annotated to SEED 

hierarchy I subsystem relative abundances ([4], Figure 7A). 

To enable correlation with PRMT scores, the environmental parameters, bacterial phyla percent 

abundances, and SEED subsystem relative abundances were converted to measures of log relative 

abundance.   Log relative abundance of a parameter was calculated using the following equation:  

Relative_Abundance(x) = log2(x/ ) 

x is a measured experimental parameter and  is the average for the parameter across all samples. 

PCCs were calculated between four different combinations, namely; all measured environmental 

metabolites and metagenomic reads annotated to SEED subsystems; environmental metabolites and 

bacterial phyla; environmental metabolites and PRMT-scores; and PRMT-scores and bacterial phyla. It 

was considered that statistical significance could not be reliably assigned due to the small number of 

samples used in the analysis (3 seasonal time points). This was of particular concern given the method's 

reliance on a multiple-test based procedure. In order to address these concerns, and to provide an informal 

confidence estimate with which to judge each individual PCC, 10,000 randomized re-samplings of the 

initial data were used to generate a distribution of PCC-scores.  Observed PCC-scores that were in the top 

or bottom 5th percentile of randomized re-sampled were considered to be a strong correlation.  

A graphical representation of observed correlations was performed using ‘Cytoscape’ [51] to 

generate a network in which experimental measurements are represented as nodes and strong correlations 

between relative abundance of measurements were represented as edges. 
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RESULTS AND DISCUSSION 

Correlation networks between environmental parameters, bacterial phyla, and SEED subsystems 

To demonstrate why PRMT demonstrates a significant advance on existing metagenomic 

analytical tools, e.g. exploring changes in the relative abundance of predicted gene functions, it was 

necessary to perform correlative network analysis of the relationships between the relative abundance of 

taxa, annotated genes and measured environmental parameters (Figure 2). Although there may be other 

environmental causal factors at play, this figure identifies correlations between changes in metabolic 

functions and environmental conditions or bacterial relative abundance.  The most abundant taxa in this 

ecosystem, Alphaproteobacteria, had a strong positive correlation (in the 5
th
 percentile of randomized 

resamples) with the relative abundance of metagenomic reads annotated to SEED subsystems 

‘carbohydrate metabolism’ and ‘cell division’.  Additionally, ‘cell division’ had a strong positive 

correlation with the relative abundance of TON.  This suggests a relationship between TON availability 

and the growth of Alphaproteobacterial populations. Additionally, there is a strong positive correlation 

between the Roseobacteriales order of class Alphaproteobacteria and the availability of TON; both peak 

in the summer. The second most abundant phylum, Bacteroidetes, had a strong positive correlation with 

the SEED subsystem ‘Phosphorus metabolism’, which, as with TON and Alphaproteobacteria, could 

implicate Phosphorus as a limiting nutrient for Bacteroidetes. Interestingly, less abundant taxa were more 

frequently characterized by strong negative correlations with measurements of nutrients in their 

environment.  The relative abundances of taxa Chlamydiae, Crenarchaeota, and Epsilonpreoteobacteria 

demonstrated a strong negative correlation with TON; Deferribacteres and Fusobacteria had a strong 

negative correlation with NO2+NO3; the phylum Actinobacteria had a strong negative correlation with 

ammonia.  Conversely, rare phyla more frequently had strong positive correlations with SEED 

subsystems, e.g. ‘Cofactors’, ‘vitamins’, ‘prosthetic groups, and pigments’, ‘Clustering based 
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subsystems’, ‘Virulence’, and ‘Motility and chemotaxis’; further exploration of these may yield additional 

avenues of discovery.  

A strong negative correlation was observed between the relative abundance of the SEED 

subsystem ‘Photosynthesis metabolism’ and the concentration of chlorophyll A.   This is similar to 

previous observations [4] that indicate the relative abundance of genes with homology to components of 

the cyanobacterial photosynthesis pathway peak in winter, while chlorophyll A concentrations, which 

relate to Eukaryotic phytoplankton abundance, peak in summer.  There is also a strong negative 

correlation between the relative change in concentration of SRP and the SEED subsystem for ‘Phosphate 

metabolism’. This suggests that when there are more genes for phosphate metabolism there is a greater 

predicted likelihood for SRP consumption. As a caveat for all of these relationships, correlation does not 

prove causality; they do however, identify relationships that invite further investigation. 

The analysis of the relationships between phyla, environmental parameters, and functional genes 

indicates that changes in taxonomic diversity affect environmental metabolomic functional potential.  To 

complement this gene-centric perspective, we present a metabolite-centric tool, PRMT, which infers 

metabolic activity from unique enzyme functions.  

The Environmental Metabolomic Matrix from the Western English Channel 

The predicted L4 Western English Channel metabolome consists of 2281 predicted metabolites and 4152 

enzyme reactions for 990 unique enzyme activities (Figure 3).   In the EMM, 70% of enzyme reactions 

are reversible.  The largest connected subnetwork in the network has 1257 metabolites and 3197 enzyme 

reactions.  The second largest subnetwork contains 30 predicted metabolites and 51 enzymatic reactions.  

There are 194 subnetworks that consist of only two metabolites each.  Approximately 63% of the enzyme 

activities in the KEGG global metabolism map (KEGG map01100) are present in the predicted 

environmental metabolome.  Individual unique enzyme activities in map01100 were represented an 

average of 128 counts per metagenomic dataset.  An average of 81% of total unique enzyme counts in 
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each metagenome could be mapped to KEGG pathway map01100.  The representation of core metabolic 

pathways in annotated metagenomes is especially evident within specific sub-groups; for example energy 

metabolism is well represented, with 95% of citrate cycle (map00020), 80% of 

glycolysis/gluconeogenesis (map00010), and 92% of photosynthesis metabolism (map 00195) enzyme 

activities detected.   Cell membrane metabolism is detected as present in the predicted environmental 

metabolome, with 72% of fatty acid metabolism (map00071) and 65% of fatty acid biosynthesis 

(map00061).  For the DNA metabolism, 65% of pyrimidine metabolism (map00240) and 67% of purine 

metabolism (map00230) are detected.  For protein metabolism, 79% of glycine, serine, threonine 

metabolism (map00260), 89% of valine, leucine, and isoleucine biosynthesis (map00290), and 90% of 

phenylalanine, tyrosine, and tryptophan biosynthesis (map00400) enzyme activities are represented. For a 

bacteria-dominated system, 100% coverage of core metabolic KEGG pathways is not anticipated, as the 

database also contains plant and animal specific reactions. 

 

PRMT scores calculated from the Western English Channel EMM 

PRMT scores were calculated for each predicted metabolite in the EMM at each of three seasonal time 

points (January 28, April 27, and August 27, 2008). Correlations between PRMT-scores and relative 

abundance of environmental parameters were generated (Table 1). The complete set of PRMT-scores is 

available as supplemental data (Additional file 2, Table S2).  A strong negative correlation between 

PRMT scores and relative changes in the concentration of an environmental parameter demonstrates that 

the metabolomic capacity for synthesis of a parameter increased when the parameter is at a relatively 

higher concentration.  Conversely, a strong positive correlation occurs if metabolomic capacity for the 

consumption of a metabolite increases when the environmental parameter is at a relatively higher 

concentration.  Only three of the six correlations were considered strong (i.e. in the top or bottom 5
th
 

percentile of randomized resamples). However, using a calculation for the cumulative normal distribution 
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(CND), given the distribution of correlations between relative abundances of environmental parameters 

and all calculated PRMT-scores, the probability that all six PCC-scores would be between -1 and -0.8 was 

<1x 10
-256

 (lowest is -0.81; Table 1).  This probability indicates that, even though some individual 

correlations are not strong (based on the given criteria), it is extremely unlikely that all six correlations 

could all be between -1 and -0.8 by chance, assuming a normal distribution of correlation coefficients. 

Correlations between PRMT-scores and the relative abundances of bacterial phyla can be used to 

generate hypotheses regarding the potential of different taxonomic groups to produce specific metabolites 

in subnetworks in the EMM. For example, Actinobacteria play an important environmental role in the 

decomposition of cellulose [26]. The relative abundance of Actinobacteria had a strong negative 

correlation with PRMT-scores for the predicted metabolite cellulose.  This strong negative correlation 

indicates that when the Actinobacteria are relatively more abundant, the predicted tendency for cellulose 

to be consumed in the environmental metabolome increases.  In another example, the Planctomycetes was 

the only phyla whose change in relative abundance demonstrated a strong positive correlation with 

PRMT-scores for L-Glutamate. This was expected, as the cell wall scaffolds of most Plancotomycetes are 

made up of glycoproteins rich in glutamate instead of murein, as is common for other bacterial taxa [27].  

Of greater interest than investigating the predicted metabolome for individual metabolites is to seek 

connected metabolic subnetworks in the EMM that have strong correlations with changes in relative 

abundance of specific taxa.  Connected subnetworks imply not just single metabolites, but partial or 

complete biochemical pathways.  These connected subnetworks were generated by identifying all edges 

in the network that connect pairs of metabolite nodes where both nodes’ PRMT-scores significantly 

correlate with the relative abundance of a specific bacterial phylum (Figure 3).  The largest connected 

subnetwork for interactions that correlated with specific phyla was comprised of 28 metabolites and 70 

enzyme reactions, and was comprised of metabolic interactions associated with the metabolism of 

phosphonoacetate.  PRMT-scores for metabolites in this largest subnetwork strongly correlated with 

relative abundances of Planctomycetes and Gammaproteobacteria.   In the set of connected subnetworks 
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were 5 small subnetworks of 5 or 6 nodes, each with PRMT-scores that exclusively correlated to the 

relative abundance of Lentisphaerae.  Predicted metabolites in these subnetworks were associated with 

flavanoids and anthocyanins.  Flavonoids have been observed to have antimicrobial effects on marine 

microorganisms [28] and flavonoid biosynthesis can be hypothesized to either have defense-related 

functions in Lentispharae or else other marine microorganisms possess the capacity to synthesize 

flavonoids in response to increased relative abundances of Lentispharae.  Biosynthesis of terpanoids from 

the precursor Farnesyl pyrophosphate correlated strongly, not only with the relative abundances of 

Crenarchaeota and Chlamydiae, but also with the relative change in concentration of TOC.  Terpenoids 

are a functionally diverse set of molecules whose synthesis by marine bacteria has been previously 

reported [29, 30]. 

Specific Examples of PRMT Analysis: primary production, phosphonate metabolism, and chitin 

catabolism 

Primary Production: The chemical equation for average photosynthesis [31] provides a framework for 

analysis of PRMT-scores in the context of primary production: 

106 CO2 + 16 HNO3 + H3PO4 + 122 H2O → C106H263O110N16P + 138 O2 

We used PRMT-scores for the metabolite ‘alpha-amino acids’ to represent biomass in the above chemical 

equation.  ‘Alpha-amino acids’ is a useful proxy for biomass as the single largest fraction of the dry-

weight of prokaryote cells is protein [32].  The PRMT-scores for relevant metabolites in this equation 

indicate that, as expected, when CO2, SRP, and NO3 are consumed, more biomass (alpha-amino acids) is 

synthesized (Figure 4).   

The PRMT scores for CO2 were most positive in August (indicating consumption) and most 

negative in January (indicating synthesis) (Figure 4).  Also, PRMT scores indicated increased production 

of alpha amino acids (biomass) in summer, and active consumption in the winter (Figure 4).  This 

matches expectations, as both bacterial and eukaryotic cellular biomasses are higher in summer [7]. When 
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compared to investigating the abundance of sequences with homology to photosynthetic genes, which 

predict that the photosynthetic apparatus is more abundant in winter [4], PRMT scores reveal another 

level of potentially more useful information about the productivity of the ecosystem. While generated 

from the same data, consideration of sequence abundances and PRMT scores provide two unique 

perspectives. The largest PRMT-score shift in primary production was observed for nitrate.  PRMT-

scores for nitrite correlated strongly with the observed relative abundance of chlorophyll A.  PRMT-

scores for orthophosphate and alpha-amino acid all had strong correlations with PRMT-scores for CO2.  

As previously noted (Table 1), relative abundance of biological measurements of chlorophyll A had a 

strong correlation with PRMT-scores for chlorophyll A, linking the molecular components for 

photosynthesis with the PRMT-predicted capacity to synthesize the mechanism of photosynthesis. 

 One key limiting metabolite for primary productivity-derived biomass is iron [33, 34]. Increased 

concentrations of Fe
2+

 correlates with increased primary productivity in ocean microbial populations [35, 

36, 37].  The PRMT-scores for Fe
2+

 demonstrated a strong positive correlation with PRMT-scores for 

alpha amino-acids, the EMM proxy for biomass, as well as the relative abundance of measured TON.  

PRMT analysis identified a sound positive correlation between Fe
2+

 and production of bacterial biomass.   

Phosphonoacetate metabolism: Soluble Reactive Phosphorus (SRP) is considered to be a limited nutrient 

in marine ecosystems, although this is probably not the case in the Western English Channel [38]. 

However, it was interesting that PRMT scores for inorganic phosphate (orthophosphate) were strongly 

negatively correlated (PCC -0.93) with changes in the relative concentration SRP (Table 1).  One reason 

for this discrepancy is that SRP is comprised of both inorganic and organic phosphate compounds. One 

group of organic phosphate compounds, the phosphonates, were considered recalcitrant to biological life 

for many years, but recent evidence from the Western English Channel suggests that they are used by a 

wide variety of bacteria and constitute a large fraction of the available phosphorus pool [38].  Currently, it 

is not technically feasible to measure specific phosphonate concentrations in marine systems, and this 

makes computational approaches like PRMT potentially valuable for investigating their relative turnover. 
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Strikingly, 92% of the enzyme activities in the phosphonate and phosphinate metabolism KEGG pathway 

(map00440) were represented in the predicted EMM, indicating that the metabolic capacity to utilize 

phosphonates was present in the metagenomes. 

The PRMT-scores for phosphonate compound, 3-Phosphonopyruvate, had strong correlations 

with PRMT-scores for CO2, and with biological measurements of chlorophyll A, suggesting a potential 

relationship between phosphonopyruvate metabolism and primary production. This is not totally 

unexpected, as phosphonopyruvate is a key intermediate step in the biosynthesis of all known natural 

phosphonates [39]. Another phosphonate of potential interest is phosphonoacetate, as the presence of 

phosphonoacetate as a natural product has been suspected but not confirmed [40].  Measured 

phosphonoacetate was strongly correlated with relative abundances of Planctomycetes, 

Gamaproteobacteria, and Betaproteobacteria.  This insight into metabolic pathways associated with a 

metabolite difficult to measure in the environment led to a study to screen for a phosphonoacetate-

oxidising activity in marine microorganisms; such an activity has recently been identified in cell-extracts 

of Roseovarius nubinhibens, and is now being characterized [unpublished data].   

Chitin catabolism: The highly insoluble, nitrogen-containing compound chitin is the most abundant 

polymer in the ocean [41, 42, 43]. Yet, it is so rapidly degraded to fructose-6-phosphate, acetate, and 

ammonia that traces of chitin are only found in marine sediments [44]. Marine bacteria were primarily 

responsible for this rapid turnover, and chitin catabolism in marine microorganisms has been well studied 

[45, 46, 47, 48].  Therefore, PRMT analysis was used to test the hypothesis that chitin degradation is a 

likely source of ammonia in the Western English Channel. Chitin is degraded via the following pathway 

(KEGG amino sugar and nucleotide sugar metabolism pathway (map00520)):  

Chitin � Chitobiose � GlcNAc � GlcN � GlcN-6P � Fructose-6P + Acetate + NH3 

These reactions were all represented in the Western English Channel metagenomes. In the KEGG 

metabolic pathways, Fructose-6P metabolism leads to KEGG pathways for Glycolysis/gluconeogenesis 
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(map00010) and Fructose and mannose metabolism (map00051), where both acetate and ammonia are 

generated.   

When considering PRMT-scores for the metabolites on the pathway for chitin degradation 

(Figure 5), a pattern for chitin catabolism was evident.  Relative turnover of chitin was highest in April, 

concurrent with the spring bloom of chitin-synthesizing diatoms in the Western English Channel [49].  

Increased turnover of chitin in spring leads to a predicted relative increase in the synthesis of chitobiose 

and increased consumption of GlcNac, ultimately yielding increased relative synthesis of chitin’s 

breakdown products, Fructose-6P, acetate, and ammonia.  Relative abundance of measured concentrations 

of ammonia had a strong negative correlation with PRMT-scores for GlcNAc.  This indicates that when 

the environmental capacity for the consumption of GlcNAc was increased, the relative synthesis of 

ammonia was also increased.  This was consistent with the reactants and products in the chemical 

equation for Figure 5.  The PRMT-scores for GlcNAc had a strong positive correlation with the relative 

abundance of the Actinobacteria, members of which are involved in decomposition of organic materials 

such as chitin [50]. The PRMT-scores predicted an increase in the turnover of chitin, concurrent with 

spring diatom bloom and with increase in relative abundance of bacterial Phyla predicted to possess the 

capacity for chitin degradation. These PRMT scores and taxonomic correlations support the hypothesis 

that measured environmental concentrations of ammonia can be linked to bacteria catabolism of available 

large environmental pools of chitin. 

 

CONCLUSIONS 

We have presented a novel computational approach, Predictive Relative Metabolic Turnover 

(PRMT), for making predictions of the relative change in the production or consumption of a metabolite 

by a microbial community. The set of all PRMT-scores for all the metabolites predicted to be present in 

an environmental metabolome provides a system-scale representation of the environmental metabolome 

derived from metagenomic sequence analysis that changes in response to fluctuations in the structure of 
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its bacterial community.  The approach was supported by comparing predicted relative turnover of 

metabolites to relative abundance of the biological measurements for those same metabolites.  PRMT also 

provided the expected relationships between CO2, Iron, orthophosphate, nitrate, and chlorophyll with 

marine primary production.  Specific, testable, biological hypotheses regarding the utilization of organic 

phosphorus and chitin were made, some of which are currently being actively investigated. The 

predictions made by PRMT are consistent with the hypothesis that bacterial population diversity is linked 

to the metabolic capacity of the community. While we have restricted our analysis to the metagenome, 

PRMT calculations are equally applicable to metatranscriptomic data.  Ongoing environmental 

monitoring projects such as the Global Ocean Survey, TARA Oceans, Hawaiian Ocean Time Series, 

Bermudan Ocean Time Series, the Long Term Ecological Research sites, NEON, and the extended 

application of the Earth Microbiome Project (www.earthmicrobiome.org) are generating vast amounts of 

metagenomic and experimental metadata that can readily be investigated by further PRMT analyses.    

 

ABBREVIATIONS 

Predicted Relative Metabolomic Turnover (PRMT), Environmental Metabolomic Matrix (EMM), 
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FIGURES 

 

Figure 1.  
Example of generating an EMM from metagenomic data.  This figure is an example of generating a 

simple EMM with hypothetical data.  Letters a-f represent unique enzyme functions identified in the 

annotation of a hypothetical set of metagenomes.  In (A), the set of all enzyme reactions for enzyme 

functions a-f between compounds C1-C5 from a database of possible reactions is listed.  In (B), a 

metabolome is constructed from the reactions identified in A.   (C) Shows the connectivity matrix of the 

network in B.  (D) Is the complete EMM for metagenomic annotated enzyme functions a-f, normalizing 

values in C such that the sum of all inputs to a compound is 1 and the sum of all outputs from a 

compound is -1. 

 

Figure 2.   

Strong correlations between environmental metabolites, metabolic subsystems, and bacterial 
population structure.  This network is a graphical representation of strong (i.e. in the top or bottom 5

th
 

percentile of randomized resamples) correlations between relative abundance of measured environmental 

metabolites (diamonds), relative abundance of metagenomic reads annotated to metagenomic SEED 

subsystems (hexagons), and relative abundance of bacterial taxa (circles) across seasonal variation for the 

Western English Channel L4 station.  Strong positive correlations are represented by solid lines and 

strong negative correlations by dashed lines. 

  

Figure 3.   
L4 Environmental Metabolome.  In the figure, edges represent enzyme functions identified in annotated 

metagenomes.  Nodes are predicted metabolites, inferred by the reactions catalyzed by detected enzyme 

functions.  Nodes are highlighted if calculated PRMT scores for seasonal metagenomes correlate strongly 

(i.e. in the top or bottom 5
th
 percentile of randomized resamples) with relative abundance of measured 

environmental parameters (Red for Total Organic Carbon, blue for Total Organic Nitrogen, and gold for 

Soluble Reactive Phosphorus).  Edges are highlighted in one of 23 colors if they connect nodes that 

correlate with relative abundance of a bacterial phylum.  Figure was generated using Cytoscape v2.6.1 

[51].  The network and calculated PRMT-scores in this figure is available for download as Additional file 

3, figure S1. 

 

Figure 4.   
PRMT-scores for photosynthesis pathway.  PRMT-scores for metabolites along the photosynthesis 

pathway are grouped by time point of metagenomic sample.   In this figure, the marine biomass in 

equation for average photosynthesis is represented by PRMT-score for alpha-amino acids.  A positive 

PRMT-scores indicate a predicted increase in relative catabolism, and negative PRMT-scores indicate a 

predicted increase in synthesis of a metabolite. 

 

Figure 5.   
PRMT-scores for chitin catabolism subnetwork.  PRMT-scores for metabolites along the chitin 

catabolism pathway are grouped by time point of metagenomic sample.   Positive PRMT-scores indicate a 

predicted increase in relative catabolism, and negative PRMT-scores indicate a predicted increase in 

synthesis of a metabolite. 

 



24 

 

 

TABLES 

Table 1.  Correlations of calculated PRMT scores with relative abundance of selected environmental 

parameter measurements.  

Parameter PRMT metabolite PCC 

Chlorophyll A Chlorophyll A -0.98 

Total Organic Nitrogen alpha-Amino acid -0.99 
Total Organic Carbon Starch -0.98 

NO2+NO3 Nitrite -0.98 

NH3 NH3 -0.81 

Soluble Reactive Phosphorus Orthophosphate -0.93 

Parameters are relative concentrations of biological measurements from Western English Channel L4 

station and PRMT-metabolites are those predicted metabolites that are representative of measured 

parameters.  PCC-scores between measured parameters and PRMT-scores are highlighted in bold if a 

strong correlation (i.e. in the top or bottom 5
th
 percentile of randomized resamples) was observed. 

 

 

Additional file 1, Table S1 

This file contains a list of all enzymatic reactions in the predicted environmental metabolome for the 

Western L4 Station.  Each line in the tab-separated file is a metabolic reaction in the format:  Reactant, 

unique enzymatic function, product. 

 

Additional file 2, Table S2 

This file contains all calculated PRMT-scores, all PCC-scores between PRMT and relative abundances of 

Taxa, and between PRMT and relative abundances of measured environmental metabolites for the 

Western English Channel L4 Station environmental metabolome. 

 

Additional file S3, Figure S1 

This file contains a list of all enzymatic reactions in the predicted environmental metabolome for the 

Western L4 Station.  Each line in the tab-separated file is a metabolic reaction in the format:  Reactant, 

unique enzymatic function, product.  It is in the format of a ‘Cytoscape’ .sif file 

(http://www.cytoscape.org).   

 

 



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Additional files provided with this submission:

Additional file 1: AdditionalFile1_Table_S1_ListOfKEGGPatwhays.txt, 5K
http://www.microbialinformaticsj.com/imedia/7227940825562799/supp1.txt
Additional file 2: AdditionalFile2_Table_S2_AllPRMT-scores.txt, 783K
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